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A variety of mono- and disubstituted phenols are alkylated with propargyl bromide to give phenyl 2-pro-
pynyl ethers, which were further coupled with aryl iodides under Sonogashira reaction conditions to give
3-phenoxy-1-aryl-1-propyne derivatives. The latter compounds underwent an initial Claisen rearrange-
ment followed by ring closure to give functionalized benzo[b]furans in moderate to good yields.
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Benzo[b]furan structural motifs are present in several pharma-
ceuticals1 and natural products.2 Functionalized benzo[b]furans
also serve as versatile synthetic intermediates. Several of these
intermediates are used for the synthesis of molecules having useful
biological properties such as the Tachykinin NK1 receptor antago-
nist,3 Angiotensin-II receptor antagonists,4 calcium channel block-
ers5 and 5-lipoxygenase inhibitors.6 Traditional methods7 for the
synthesis of benzo[b]furans involve reaction of 2-halophenols with
a terminal alkyne under palladium catalysis, wherein the interme-
diate is a 2-alkynylphenol derivative as shown in Scheme 1. Even
today, this is one of the most widely used approaches for the
synthesis of benzo[b]furans.

A major limitation of this approach is the lack of flexibility in
terms of substituents on the carbocyclic part of benzofuran nucleus
and only 2-substituted benzofurans are generally accessible by this
approach. Moreover, limited commercial availability of substituted
2-halophenols further limit the scope of this approach. Other less
popular approaches for the synthesis of benzo[b]furans include
cyclization of vinylic phenols8 under palladium catalysis, cycli-
O
R2

R1

is of benzo[b]furans.7
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nti).
zation of 2-acyloxy-1-bromomethylarenes9 with Cr(II)Cl2/BF3�OEt2,
cyclization of arylketoximes,10 cyclization of aryloxycarbonyl11

compounds, intramolecular [2+2] cycloaddition of 2-acyloxyacetic
acids,12 reaction of p-benzoquinones with 1-(N-methylanilino)-1-
methyl-thioester,13 microwave irradiation of [{2-(aryloxy)propa-
noyl}-(cyano/ethoxy-carbonyl)-methylene]triphenylphosphoranes14

and photochemical reaction of phenyliodoniumphenolate with
alkynes.15 However, all the above methods suffer the disadvantage
of either lack of commercial availability of the intermediate pre-
cursors or require several steps for precursor synthesis.

In this Letter, we report a convenient and very general proce-
dure for the synthesis of highly functionalized benzo[b]furans from
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Scheme 2. General method for the synthesis of benzo[b]furan.
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Table 1
Syntheses of benzo[b]furans 5 from phenyl propargyl ethers 2 and aryl iodides 3 via 3-phenoxy-1-aryl-1-propyne intermediates 4

Entry Ether (2) Iodide (3) Propyne ether (4) Yield (%) Benzo[b]furan (5) Time (h) Yield (%)

1

2a

O

3a

Ι

4a

O
90

O
CH3

5a

10 65

2 2a

Ι

CF3

3b 4b

O
CF3

91

O
CH3

CF3

5b

10 64

3

2b

O

H3C

Ι

CH3

3c 4c

O
CH3

H3C
96

O
CH3

CH3

CH3

5c

16 71

4

2c

O

F
Ι

OCH3

3d 4d

O

F

H3CO

95

O
CH3

F

H3CO
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9 68

5 2c

Ι OCH3

3e
4e

O

F
OCH3 94

O
CH3

F

H3CO

5e

8 70

6 2c
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95

O
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OCH3
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Cl
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Table 1 (continued)

Entry Ether (2) Iodide (3) Propyne ether (4) Yield (%) Benzo[b]furan (5) Time (h) Yield (%)

11 2g
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3k 4k

O
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inexpensive and readily available substituted phenols and aryl
iodides. As outlined in Scheme 2, the phenols 1 underwent smooth
alkylation16 with propargyl bromide in the presence of potassium
carbonate in tetrahydrofuran to give phenyl propargyl ethers
2a–k in quantitative yields. The alkynes 2a–k were arylated with
various aryl iodides 3a–l under Sonogashira-reaction conditions17

to give aryl propargyl ethers 4a–r in 80–96% isolated yields as
shown in Table 1. The coupling reactions for entries 1–9 were car-
ried out using catalytic amounts of Pd (PPh3)2Cl2 (0.01 equiv) and
copper (I) iodide (0.03 equiv) using triethylamine18 serving as a
base and solvent. In the case of entries 10–18, dimethyl sulfoxide
(DMSO) was used as the solvent with 1.5 equiv of triethylamine
as a base, a catalytic amount of Pd(PPh3)4 (0.01 equiv) and copper
(I) iodide (0.03 equiv) to improve the homogeneity of the reaction
mixture and thereby the yield of the reaction. Where electron-
withdrawing groups such as nitro, cyano, ester, aldehyde or keto
were present on the substrates, the use of excess triethylamine
reduced the yield in the Sonogashira19-coupling reaction. The best
yields were obtained when 1.5 equiv of triethylamine in DMSO
were employed (entries 10–18).

Attempted Claisen rearrangement20 (Table 1, entry 1) by pyro-
lysis of 3-phenoxy-1-phenyl-1-propyne 4a at 180 �C in the absence
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Scheme 3. Proposed mechanism for the formation of benzo[b]furans.
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of solvent resulted in a tarry material and no identifiable product
was formed in the mixture. Reaction of 4a in polyethylene glycol21

(PEG) up to 220 �C resulted in recovery of the starting material.
Reactions using Hg (OCOCF3)2 in chloroform did not proceed at
all and the starting material remained intact even after 12 h of
reflux.22 Reactions under Lewis acid (AgBF4)23 catalysis resulted
in a complex mixture. The caesium chloride (CsCl)24 catalyzed
reaction in N,N-diethylaniline (N,N-DEA) resulted in an unidentifi-
able less polar product along with the unreacted alkyne ether 4a.
The reaction catalyzed by caesium fluoride (CsF) in N,N-DEA25

resulted in the formation of the desired benzo[b]furan 5a in a
65% isolated yield.

The generality of this approach was studied using selectively
substituted phenols 1 and aryl iodides 3 as shown in Table 1. To
our delight, we found that the present method tolerated a wide
range of substituents on both of the aryl rings. In addition to this,
it was also observed that electron deficient phenols showed excel-
lent reactivity and formed products in shorter reaction times (en-
tries 10–18), whilst prolonged reaction times were required for
electron rich phenols (entries 1–9). Even sterically demanding,
ortho-substituted aryl iodides (entries 4 and 7) delivered good
yields of benzo[b]furans 5 under these conditions.

The general transition states involved in the thermolytic Claisen
rearrangement and cyclization of aryl prop-2-ynyl ether 4 are
shown in Scheme 3.23,24 Intermediate 4 on [3,3]-sigmatropic rear-
rangement gives the allenyl dienone A, which on enolization gives
thermodynamically more stable phenol B. The phenoxide anion
formed in the presence of caesium fluoride would cyclize to
benzo[b]furan 5. No trace of dihydro-2H-1-benzopyran was de-
tected in all the cases studied.21

In conclusion, we have developed a novel three-step procedure
for the synthesis of highly functionalized 2-methyl-3-aryl-
benzo[b]furans from commercially available, suitably functional-
ized phenols and substituted aryl iodides. The present method
can be utilized to synthesize various functionalized analogues of
Isoparvifuran,2b,c a known anti-fungal agent. The present method
has several advantages: simple reaction conditions and experimen-
tal simplicity combined high functional group tolerance. We
believe that this methodology will be a valuable addition to the
existing methods in the field of benzo[b]furan synthesis which
allows the preparation of annelated benzofuran analogues for bio-
logical screening. Further work is in progress towards generating
synthetic routes for the recently isolated and naturally occurring
benzo[b]furan compounds from Dalbergia Cochinchinensis Pierre
(Leguminosae)2c,26 and the details will be published elsewhere.
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J = 7.8 Hz, 1H), 8.11 (d, J = 8.4 Hz, 1H); MS m/z (+ cAPCI): 260.24 (M+H)+; Anal.
Calcd for C13H9NO3S: C, 60.22; H, 3.50; N, 5.40; S, 12.37. Found C, 60.17; H,
3.56; N, 5.43; S, 12.43.
Spectral data for 5m: off-white solid; mp 136–138 �C; IR (KBr) 2921, 2230,
1607, 1514, 1429,1247, 1184, 948 cm�1; 1H NMR (300 MHz, CDCl3) d 2.42 (s,
3H), 2.57 (s, 3H), 7.23–7.35 (m, 5H), 7.51 (d, J = 7.5 Hz, 1H), 7.74 (d, J = 7.8 Hz,
1H); MS m/z (+ cAPCI): 248.30 (M+H)+; Anal. Calcd for C17H13NO: C, 82.57; H,
5.30; N, 5.66. Found C, 82.60; H, 5.26; N, 5.71.
Spectral data for 5q: viscous oil, IR (neat) 2981, 1714, 1608, 1425, 1291, 1174,
1038, 950 cm�1; 1H NMR (300 MHz, CDCl3) d 1.46 (t, J = 7.2 Hz, 3H), 2.60 (s,
3H), 4.47 (q, J = 7.5 Hz, 2H), 7.23–7.27 (m, 1H), 7.33–7.36 (m, 1H), 7.42–7.46
(m, 4H), 7.72 (d, J = 7.8 Hz, 1H), 7.88 (d, J = 7.8 Hz, 1H); MS m/z (+ cAPCI):
281.03 (M+H)+; Anal. Calcd for C18H16O3: C, 77.12; H, 5.75. Found C, 77.15; H,
5.80.
Spectral data for 5r: Off-white solid; mp 140–142 �C; IR (KBr) 2842, 1698,
1613, 1429, 1265, 1184, 1009 cm�1; 1H NMR (300 MHz, CDCl3) d 2.58 (s, 3H),
4.08 (s, 3H), 7.35 (s, 1H), 7.37–7.40 (m, 1H), 7.46–7.49 (m, 4H), 7.68 (s, 1H),
9.94 (s, 1H); MS m/z (+ cAPCI):267.19 (M+H)+; Anal. Calcd for C17H14O3: C,
76.68; H, 5.30. Found C, 76.71; H, 5.34.
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